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A method of designing a self-adaptive missile guidance system is

presented. The system inputs are assumed to be known in a statistical

sense only. Newton's modified Wiener theory is utilized in the design

of the system and to establish the performance criterion. The missile is

assumed to be a beam rider, to have a g limiter, and to operate over a

flight envelope where the open-loop gain varies by a factor of 20. It is

shown that the percent of time that missile acceleration limiting occurs

can be used effectively to adjust the coefficients of the Wiener filter.

The result is a guidance system which adapts itself to a changing

environment and gives essentially optimum filtering and minimum miss

distance.

INTRODUCTION

The analytical design of missile guidance systems is in general

complicated by many factors. Three of the most troublesome factors are

the random character of the input signals, the inherent g limitation

of the missile, and the wide variation in open-loop gain of the system.

The first of these three factors_ the random character of the input

signals, clearly suggests that the design should be carried out on a

statistical basis. Stewart (ref. i) was the first to report on the statis-

tical design of a beam-rider missile guidance system. This was an appli-

cation of the classic paper by Wiener (ref. 2). Stewart's initial effort

(ref. i) showed one method of approximating the ideal Wiener filter. It

also illustrated the fact that a considerable reduction in mean-square miss

distance could be obtained by using statistical design methods rather than

transient response methods.

The second design problem is created by the inherent g limitation

of the missile and is obviously nonlinear in character. A direct anal_i-

cal approach to this problem is extremely difficult because of the lack of

an optimum general nonlinear design method. However, Stewart (ref. 3)

applied the modified Wiener theory, which was suggested by Ne_on (ref. 4),



to this problem. This was an indirect approach because it dependedupon
placing a constraint on the mean-square acceleration rather than the
actual acceleration of the missile. Under certain conditions, this
indirect approach has proved to be a very useful design tool. Using
Newton's method, Stewart, et al.(ref. 5), showedthat the three most
important factors affecting miss distance are target acceleration, glint
noise, and the ratio of missile acceleration to target acceleration. He
also showedthat there is only a small increase in miss distance due to
missile dynamics. Thus, for purposes of analysis, the missile can, in
general, be treated as a simple gain constant_ the value of which is
dependent upon Machnumber and altitude.

The third design problem considered is created by the large variation
in the open-loop gain of the system. The predominant cause of this gain
variation is the large change in dynamic pressure, q_ which the missile
encounters over its flight envelope. The fact that the controlled system
(i.e., missile) changes complicates the problem %oa large degree and also
focuses attention on the need for a self-adaptive guidance system. Con-
siderable effort has recently been expendedon the problem of open-loop
gain variation in the design of self-adaptive autopilots for aircraft
(ref. 6). Someof the concepts which have been useful in the design of
the self-adaptive autopilots will be utilized here. For example, interest
will be centered upon the use of internal measurements of system dynamic

performance to effect continuous adjustment of the controller parameters.

Optimum operation of the system, as defined by a predetermined perfo_nance

criterion_ will be the primary design objective.

Thus, it is the scope of this paper to consider the design of a

simplified beam-rider missile guidance system where the inputs are known

in a statistical sense_ where saturation (g limiting) exists, and where

the open-loop gain changes as a function of dynamic pressure. A method

is presented for designing systems that will automatically adjust the

Wiener filter part of the guidance system as a function of the percent

of time of acceleration limiting. The result is a system that is self-

adaptive; that is, the system automatically adjusts itself in such a

manner that essentially minimum mean-square miss distance results even

though the gain of the missile varies over a _ide range.
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NOMENCLATURE

aH

aMC

missile acceleration_ ft/sec 2

missile acceleration command signal_ ft/sec a
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aMD

aML

D(s)

g

MF

KM

xG( )

N

Pi

qi

q

Y

YM

y_

YT

_5

C

c A

*yTYT(s)

missile acceleration, ft/sec2 rms (bar indicates rms quantity)

missile acceleration limit, ft/sec 2 (aML = maximum value of

aM = 20g)

optimum Wiener filter transfer function (s is complex

variable, _ + jw)

acceleration of gravity_ 32.2 ft/sec 2

open-loop gain of Wiener filter

open-loop gain of missile

open-loop transfer function of optimum Wiener filter and
missile combination

magnitude of white noise spectral density, ft2-sec

numerator coefficients of optimum Wiener filter

denominator coefficients of optimum Wiener filter

dynamic pressure, ib/ft 2

input signal to servo which adjusts Wiener filter

(percent time lirmiting)/lO0

reference signal in percent time limiting detector

displacement of missile from reference, ft

displacement of radar beam due to noise_ ft

displacement of target from reference, ft

acceleration of target, ft/sec 2

control surface deflection, deg

system error signal, YT - YM' ft

rms error (or rms miss distance), ft _ms

apparent error, YN + YT - YM, ft

power spectral density of "white" radar noise, ft2-sec

power spectral density of target displacement_ ft2-sec
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DESCRIPTION OF THE PROBLEM

Guidance Problem

Stewart (ref. I) has shown that a beam-rider guidance system can be

represented by the block diagram of figure i if certain simplifying

assumptions are made. The inputs to the system are the target position,

YT, and the radar glint noise, YN" The output of the system is missile

position, FM" The error of the system, c, is a quantity which cannot be

measured because YT and YN actually come in at the same point and are

physically inseparable. However, the error c, which can be expressed as

miss distance in feet, is the quantity that we desire tominimize through

proper design. The apparent error, Ca, is the only error quantity that

can be physically measured. It is seen that Ca = YT + YN - YM"

It is assumed that the quantities YN and YT are known only in a

statistical sense and that they are uncorrelated. To be more specific,

units and input magnitudes have been chosen for design purposes so that

the power spectral densities of the noise and target position are given,

respectively, by
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¢NN(s) = N, a constant
= I00 ft 2 sec

(i)

829.47 ft 2 sec (2)
: s4(0.16_ s2)

It is apparent that the noise signal is assumed to be white noise with a

constant spectral density. The value of the noise given in equation (I)

corresponds approximately to glint noise from a medium sized bomber. The

spectral density of the target signal, YT, has been derived from the

assumption that the target maneuvers laterally with a maximum acceleration

of ig first in one direction, then in the other. Thus the target accelera-

tion signal is a rectangular wave of ±ig with zero crossings which have

a Poisson distribution and an average period of 5 seconds.

The missile is also assumed to have a velocity advantage over the

target. Thus a hit will be assured if the error in following the ±ig

random maneuver of the target is made small enough. This error can never

be zero because of the noise which contaminates the input signal. However,

the analytical design technique (modified Wiener theory) used in this

report does yield systems which have a smoothing effect on the noise; that

is, the effect of the noise is minimized by proper design.

It should be noted that the above assumptions are essentially the

same as those used by Stewart in previous beam-rider studies (refs. i, 3,

and 5)- A minor variation, however, occurs in the form of the power
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spectral densities of the target maneuver and the noise as a result of

using slightly different definitions of the Fourier and inverse Fourier

integrals.

The main justification for using the previously described inputs is

that they can be described statistically in convenient mathematical forms.

However, they are also believed to be good approximations for this design

problem.

Figure i shows that the apparent error, Ca, is the input to the

Wiener filter, D(s). The function of D(s) is to provide the desired

filtering and also stability to the over-all system. Initially D(s) is

considered as a linear network. This restriction will be removed later.

The output of D(s) is the missile acceleration command signal, aMC, l

which is the input to the missile-autopilot combination; _ is the control

surface excursion; and the ±L limits on the control surface servo indi-

cate that control surface excursions are limited. For design purposes,

it is assumed that the acceleration of the missile is limited to ±20g

by the structural load limit of the missile. The open-loop gain of the

missile, KM, will be allowed to vary as a function of dynamic pressure, q.
The range of variation of KM will be from 20 to i ft/sec2/degree and the

servo limit, L_ will be assumed to be 32.2 °.

Missile Autopilot Problem

The missile autopilot block shown in figure i is a much simplified

approximation to a real system. Consider the slightly more complicated

version shown in figure 2(a). The control requirements of the autopilot

can now be defined as follows:

(a) If aMc > 20g and KML > 20g, then aML = 20g

(b) If aMC < 20g and KML > aMC , then aM = aMC

(c) If aMC < 20g and KML < aMC , then aM = KML

To meet these requirements, the autopilot must provide a transfer function,

a_aMc , which is independent of the gain, KM, in the linear region;

furthermore, it must limit the maximum acceleration of the missile to 20g,

the assumed structural load limit. It can be seen from figure 2(a) that

the product of missile gain, KM, and the limit level, L, is the maximum

maneuvering capability of the missile. If KML > 20, the missile can

exceed the structural load limit. Requirement (a) prevents this occurrence.

The fact that KM will be allowed to vary by a factor of 20 adds consid-

erable difficulty to the problem of meeting the above autopilot control

requirements. However, McLean and Schmidt (ref. 7) have recently shown

lit should be noted that the units of aM, aMC , and aML are given in

ft/sec 2 in figure i and subsequent figures. However, for convenience, all

acceleration quantities in the text and also in the figures will be _iven

in gravitational units or g's.



that the effect of gain changes in the controlled element (missile) can
be reduced by meansof a very high gain in the for_ard loop. Their
solution is shownin figure 2(b). A study showsthat the configuration
in figure 2(b) meets the requirements previously set forth. Furthermore,
it is apparent that the entire missile autopilot can now be treated as a
unity gain limiter with variable limits rather than considered as a fixed
limit level and a changing gain, KM. Viewed in this manner, figure 2(b)
is equivalent to that shownin figure 2(c). The limit level, aM]Z,is
variable from ig up to 20g, the assumedstructural load limit.

This treatment of the missile autopilot is admittedly quite simple.
The dynamics of the missile_ instruments, servo_ etc., certainly must be
considered in any practical system; however, it is believed that the high
gain system described in reference 7, if properly designed_ could result
in a missile autopilot which has the property of giving a transfer func-
tion_ a_aMC, which is independent of flight conditions in the linear
region. The model of such an autopilot might then be reasonably
approximated by the limiter of figure 2(c), followed by a linear, time-
invariant, transfer function.
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DESIGN OF THE GUIDANCE SYSTE}4

In view of the above discussion concerning inputs, limits, and

autopilot design, the guidance system design problem can be restated as

follows. Design the controller of figure 3 so that the mean-square

error, _2, will be minimized when the statistical inputs are given by

equations (i) and (2) and the limit level_ aML , varies by a factor of 20.

The method of design used in this paper relies mainly upon Newton's

modified Wiener theory. Because of this_ the limit level aML , can not

be used explicitly in the design. Instead, design of the controller is

effected by placing a constraint on the mean-square acceleration of the

missile _-_2 in the classic manner. It will be shown that if the design

value of _2 is too large, the system becomes unstable for small values

of limit level aML. Conversely, if the design value of _-_2 is small_

one has uranecessarily large _2 for the large values of limit level, aML.

It will be shown in the sequel that the value of design acceleration

aMD should vary as a function of the limit level, aML _ in order to obtain

the optimum response (minimum 22). Since we are interested in a rather

large range in limit level_ it is obvious that the values of aMD chosen

for design purposes w-ill also span a large range. Furthermore, each value

of aMD defines a unique controller or Wiener filter, D(s). Hence, for

the guidance system to operate_ it will be necessary to change the con-

troller with limit level. There are at least two methods of accomplishing

this: (i) Measure the outside environment (e.g., q) and program the con-

troller to change as aML changes with the environment; and (2) measure

the dynamic performance internally (e.g., percent of time that the servo
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of figure i is at is maximt_n) and use the internally meast_red signals to

adjust D(s) continuously in an optimum fashion. 2 Both methods yield

essentially the same response when the inputs are restricted to those

described by equations (i) and (2). However, the second method will be

concentrated upon in this paper because it yeilds a system that is superior

for certain deviations in the magnitude of these statistical inputs. In

this sense, the system adapts itself to both changes in missile open-loop

gain and inputs.

Classical Modified Wiener Design
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The initial step in the design procedure is to design several optimum

systems, corresponding to various points in the flight regime, by conven-

tional Newton modified Wiener design theory and then calculate the rms

error for each of the optimum systems. Therefore; four optimum linear

systems having the same statistical inputs, but different mean-square

acceleration constraints, were designed, s In all four cases it was

assumed that the rms acceleration of the missile would be one-half the

acceleration capability for that particular point in the flight regime.

Since for structural reasons the peak acceleration of the missile has

been fixed at 20g_ the rms design acceleration a--_ corresponding to

this case is 10g rms. The other three designs were based on aML = i0,

4, and 3g with corresponding rms design accelerations of amp = 5, 2_ and

l-i/2g rms. The choice of the design acceleration_ amp , to be one-half

the acceleration available_ aML , at each point in the flight regime is

rather arbitrary; that is_ no exact rule exists for selecting the design

rms acceleration as a function of the peak acceleration capability. The

hypothesis has been made that aM_/ay[L = 1/2 is a good choice because

it can be shown that the acceleration of the missile, aM, will be limited
approximately 4.56 percent of the time (see appendix). In other words

the response will be essentially linear when @/aML = 1/2.

All four of the optimum linear systems_ discussed above, have

open-loop transfer functions of the same form. This transfer function is

given in general terms by

KG(s):  r(P2S2+ + i) (3)
s2(qss 3 + q2s 2 + qls + i)

2The fact that internal measurements of dynamic performance are used

to adjust the controller to compensate for changes in missile gain leads

to the viewpoint that the guidance system is self-adaptive in nature.

3The calculations involved in the analytic design of optimum systems

are considered redundant to this paper. For examples of these calculations

the reader is referred to the early works of Stewart (refs. I and 3) and

to the particularly lucid description of the method given by Newton (ref. _)
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Table I showshow the parameters of the Wiener filter, D(s), in
equation (3) vary as a function of the design acceleration, aMD.4 The
block diagram for the optimum systems is then given by figure 4.

The rms error corresponding to each of the four optimum systems can
nowbe obtained. It can either be calculated by using equation (3) as
the optimum linear system and standard integral tables (ref. 8) or it can
be measuredon an analog computer by simulating the system shownin fig-
ure 4. The calculated rms errors for these systems are given in figure 5.
Furthermore_ simulation studies on an analog computer checked these points
to well within the expected engineering tolerances when the limit level
(±aML in fig. 4) was set equal to twice the rms design acceleration, aMD,
in each case.

Analog computer studies were also madeto determine the effect of
the limit level on rms error for each of the four optimum systems. The
results of these studies are shownin figure 6. For comparison purposes
the curve of figure 5 is also plotted in figure 6. Thus the performance
of linear systems, given in figure 5, is comparedto that of nonlinear
systems where the nonlinearity is saturation.

Inspection of figure 6 reveals that a design based on aM_/aML= 1/2
does not necessarily yield the minimumrms error whenthe system has a
physical limiter. For example, consider points A and B in figure 6.
These points correspond to two systems which have the sameacceleration
limit, aML= 6g. Point A corresponds to an optimum system design based
on aMD= 3g rms (_a_ L = 1/2) and point B corresponds to an optimum
design based on _ = 5g rms (a--_/aML= 5/6). However, the rms error at
point A is 28 feet rms and at point B it is 25.5 feet rms. At point A the
system is operating essentially as a linear system because saturation
occurs only a small percentage of the time (approximately 4.56 percent).
At point B the system operation is nonlinear and saturation occurs approx-
imately 23 percent of the time (see appendix). Thus it is obvious that
system performance can be improved (in one case, at least) by simply
forcing limiting to occur a greater percentage of the time than is required
for linear response.
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Stability Studies by Root Locus Method

Booton, et al. (ref. 9), suggested a method of calculating the rms

error curves of figure 6. The method depends upon the fact that a limiter

can be treated as an equivalent gain which is a function of _/aML.

This concept of treating a limiter as an equivalent gain suggests the use

of root locus plots of the four optimum systems as an aid in analyzing the

problem. Root loci of the four optimum systems are shown in figure 7.

Table I shows that there is a particular value of gain associated with each

4The classic Wiener design (i.e., infinite acceleration limits) is

also given for comparison purposes.
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optimum linear system. For _ = 10g rms, KF = 4.45; for aMD = 5g rms,

K F = 3.25; for aMD 2g rms, KF = 1.15; and for aMD l-i/2g ms_

KF = 0.50. These particular values of gain fix the closed-loop poles for

the respective systems and at these values the systems will yield the
mAnimum rms error for the assumed inputs. Note, however, (see fig. 7(a))

that as the gain of the system designed for aMD = 10g rms is reduced

from the design value of 4.45 to 3.25, 1.15, and 0.50 (corresponding to

the gains of the other optimum systems) , the system actually becomes

unstable. Thus it is apparent that for stability reasons alone it is

necessary to change the pole-zero locations of the filter when the for_ard

gain of the system is reduced by limiting. A composite plot of the closed-

loop pole-zero locations of the four optimum systems shows how the poles

and zeros should vary as the equivalent gain is reduced in order to main-

tain optimum linear response (minimum rms error). This is shown in fig-

ure 8. Note that one pair of complex poles and the real pole are fixed

in the s plane and do not depend upon aMD. The complex zeros and the

other pair of complex poles do, however_ vary as a function of _ in

an orderly manmer. Inspection of the root loci (fig. 7) in the neighbor-

hood of the dominant poles (i.e., those nearest the origin) shows that the

optimum systems do not all have the same relative stability. For example_

figure 9 shows a composite root locus plot of the dominant poles of the

four optimum systems. The gains have been normalized for each system so

that the values of gain shown correspond to a per unit of "design value

of gain" in each case. Note that the systems designed for the lower values

of aMD are less sensitive to a reduction in gain than those designed for

the higher values of _. Thus it is obvious that the increase in miss

distance (rms error) as the limit level is lowered (see fig. 6) is in part

due to a reduction in stability; and furthermore, the degradation in

performance is a function of the design acceleration_ a--_. It may be

recalled that figure 6 showed that system performance could be improved

by simply forcing limiting to occur a greater percentage of the time than

is required for linear response (i.e., 23 percent rather than 4.56 percent

of the time for the case where aML = 6g).

Design of the Self-Adaptive Loop

Previous considerations have shown that it is desirable to have a

control system which measures the percent of time limiting. Furthermore_

the control system should adjust the modified Wiener filter parameters in

such a manner that the percent of time limiting is the optimum for the

particular value of aML. A method of doing this is show_ in figure i0.

Switch S is closed when aMC _ aML; thus_ _ is equal to percent

time limiting per i00 (where x is equal to time average value of x).

Note that x is compared to the reference y and the difference drives

a servo which adjusts the parameters of the Wiener filter according to

figure ii. Figure ii was derived from the design data given in table I.

The signal w was arbitrarily chosen to be a linear function of the _ns
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design acceleration, _. Thus the points in figure ii where w = 0 and
w = i correspond_ respectively, to aMD= 1.5g rms and_ = 10g rms;
and the intermediate values of w between 0 and i correspond to optimum
modified Wiener design where _ lies between l.Sg and 10g rms.

With the signs show_in figure i0, if x > y the servo adjusts the
parameters of the filter toward a lower a_ design. Conversely, if
x < y the servo adjusts the parameters toward a higher aMD design. Thus
the servo seeks a null where x = y, the point where the system has a
constant percent time limiting. Since x can have only the values of one
or zero, the servo hunts continuously about the quantity y.

Tests were madeof the complete system on an analog computer with
the statistical inputs given in equations (i) and (2). With the servo
gain set at 20, as shownin figure i0, it was found that the self-adaptive
loop had very good characteristics. The gain was held constant during
the remainder of the study.

Analog computer studies were madeto evaluate the effect of y
(i.e., fixed values of percent time limiting) on the mean-square error
of the system _2 for various values of limiting aML. Figure 12 shows
a block diagram ofthe system, including the self-adaptive loop, that
was used during these studies.

The results of the computer studies are given in figure 13(a). The
curves showmultivalued characteristics very similar to those discovered
by Booton, et al. (ref. 9). However, it is apparent from a cursory
inspection of figure 13(a) that on each curve there is a minimumpoint
(minimumrms error) which is deter_minedby a particular percent time
limiting for each value of acceleration limiting, aML. Theseminimum
points were used to determine the curve plotted in figure 13(b) which
showshow the missile acceleration limit, aML, should vary as a function
of percent time limiting. The results shownin figure 13(b) seemalmost
intuitive. Certainly it is obvious that as the limit level_ aML, is
reduced to a level approaching the magnitude of the input signals, it is
necessary for the system to be operating in the saturated region nearly
I00 percent of the time in order to follow the inputs. This implies that
the percent time limiting should increase as aML decreases. It should
be noted however_ that limits were placed on the variations of the Wiener
filter parameters to keep the variation within the design values given in
figure ii. Since the system operates at the extreme values part of the
time, it is obvious that slightly different results would be obtained if
the design values were extended by an order of magnitude.

In order to use the results of figure 13(b), it is necessary to
measure the acceleration capability at each point in the flight regime.
The only practical way the author knows to do this is to measure external
environment. This suggests that in order to obtain the optimumperformance
it would be necessary to relax the design requirement of adaptive control.
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However, if an estimate of the average aML can be madefor a typical
missile attack, then figure 13(b) can be used to determine the optimum
percent time limiting, and measurementof dynamic pressure will not be
mandatory.

Simulation Tests With Varying KM
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So far only fixed missile gain, KM, has been considered in both the

analytic design phase and in the analog computer studies which have been

described. The problem of a changing missile gain_ KM(t) has been

analyzed only on the analog computer. The computer tests involving KM(t)

(see fig. 14) were made with the statistical inputs given by equations--(1)

and (2) with KM(t) decreasing linearly with time over a 20 to i range in

a 2-minute interval. Typical time history curves of the system error c_

the Wiener filter adjusting signal w, and the missile acceleration aM,

are shown in figure 15. The fact that the error c does not increase

greatly near the end of the rum indicates that the gain variation is slo_

enough for the problem to be considered essentially time invariant. Thus

the time average error (c) for one run is essentially the same as the

ensemble average error (_) for a number of runs. (The reader will recog-

nize this as an assumption that is often made in missile studies.) No

claim is made as to the conformity to actual missile gain variation for

this particular gain changing program. However_ it was necessary to

present the guidance system with the same inputs and the same variation

of KM(t) in order to compare results in the following studies. Analog

tests were made to determine how the rms error, c, varied with the rms

design acceleration, a--_, (i.e._ D(s) was held fixed at various design

values) _{hen KM(t) changed by a factor of 20 to i. The results of the

tests are shown in figure 16(a). For this particular variation of KH(t)

there is an optimum modified Wiener design at aMD _ 5g. This corresponds

to a g limit of roughly 10g or the mid-range of the KM(t) variation.

Tests were also made to determine the effect of percent time

limiting when KM(t) varied over the 20 to i range; D(s) was allowed to

vary to maintain a fixed percent time limiting. The results are sho_n

in figure 16(b). Note the minimum rms error point of the curves occurs

at approximately 20-percent time limiting. Since 20-percent time limiting

corresponds to an optimum g limit of 10g in figure 13(b) and the average

g limit (based on the chosen KM(t)) is also lOg, it is apparent that

optimum response can be obtained if the average g limit is known. This

means that there is the practical problem of anticipating the average g

limit during a missile flight. Selecting the average g limit should be

no more difficult than estimating the statistical character of the inputs

to the missile. The average g limit can probably be chosen to correspond

to the mid-point in the flight regime in most cases.

The curves shown in figure 6 are quite heuristic in nature because

they show that under certain conditions performance better than that
obtained with Newton's modified Wiener system is possible. In other words_
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there should be a curve that is tangent to the curves o£ figure 6 and
corresponds to all possible _ designs from _ =iOg downto l-i/2g.
The curve would like to the left of the dashed curve5 in figure 6. Analog
computer studies showthat with KM fixed and with the percent time
limiting chosen to correspond to the g limit according to figure 13(b),
the performance is better than that with an optimum modified Wiener
system. The curve in figure 17 labeled "optimum percent time limiting"
showsthis performance, and for comparison purposes the 4.56-percent time
limiting (or optimum Newtonmodified Wiener) curve is presented. Tests
were also madewith the g limit fixed (KM = constant) and the percent
time limiting fixed at 20 percent. This performance curve in figure 17
showsthat 20-percent time limiting is better than 4.56 percent over the
range.

It is also interesting to consider the operation of the missile system
when it is assumedthat dynamic pressure is measured. Suchoperation means
that design requirements have been relaxed so that adaptive performance is
not required. However_it also meansthat the system can now operate with
the percent time limiting changing as a function of g limit level
(i.e., dynamic pressure). In other words, the miss distance (rms error)
that can nowbe expected is that described by the optimumpercent time
limiting curve of figure 17 rather than the 20-percent time limiting curve.
Analog computer tests showthat the rms error, _, is 22.41 feet rms under
these conditions when KM(t) varies in the mannerpreviously considered.
The average g limit, it should be recalled is 10g in this case. The
value of _ =22.41 feet rmscomparesquite closely to the value of

= 23.04 feet rmswhich is obtained when aML is fixed at 10g and the
optimumpercent time limiting of 20 percent is used (see fig. 13(b)).

Thus it can be seen that two closely related designs have evolved
from this investigation. Oneis an adaptive type design that depends upon
the designer's being able to estimate the average g limit level of the
beam-rider missile during a typical attack. The other is an "optimum"
design whose response depends upon maintaining the optimumpercent time
limiting at all times. In both cases_ performance_ as measuredby rms
error (or rms miss distance), is superior to that realized by Newton's
modified Wiener design. Figure 18 showsthe block diagrams of the two
systems. It should be noted that a percent time limiting computer (detec-
tor plus servo) is the heart of both designs. Furthermore the Wiener
filter, D(s), has variable coefficients that are adjusted by the percent
time limiting computer in both cases.

A
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INPUT VARIATIONS

In all of the preceding discussions 3 the inputs have remained fixed

at the original design values. Roberts (ref. i0) has shown that control

5The dashed curve corresponds to optimum Newton modified Wiener

system performance.
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systems with a certain class of randomly varying inputs can be made

self-optimizing. In general_ his method depends upon synthesizing the

Wiener filter part of the design in such a manner that the spectral

density of one of the state variables of the system has the same form as

the noise when the system is operating in an optimum manner. The method

works very well for simple systems where the signal and/or noise change

slowly with time. Roberts also shows that his method leads to a compli-

cated function that is extremely difficult to realize in the case of the

problem we have been studying.

Any change in the inputs_ either in magnitude or shape of power

spectral density, will change the miss distance of an optimum system;

that is, the system will be optimum only for the exact inputs that were

assumed at the start of the design. Analog computer studies were made

to determine the effects of changing target and noise magnitudes. The

results are shown in figure 19. The "solid" curves show rms errors for

a modified Wiener design of _ = 5g when it is subjected to a 10g limit,
and inputs other than those for which it was designed. For the tests

the Wiener filter coefficients were held constant at the 5g design values.

The dashed curves show the results of computer tests which were made with

aML = lOg, a fixed 20-percent time limiting, and the Wiener filter, D(s)_

changing to maintain the 20-percent time limiting. The design values of

input magnitudes are CN(s) = i00 and _yTYT(S) = 1.00 per unit.

A study of figure 19 reveals that the performance of the self-adaptive

system is superior to that of a system which has a fixed modified Wiener

filter except in the region where both the target and noise inputs are

much greater than the design values. A study of time histories of the

adaptive system variables (which is not presented here) shows that the

performance of the system could be improved in this region by forcing the

system to operate with more than 20-percent time limiting. Hence it is

obvious that the self-adaptive design presented can adapt itself to some

input magnitude changes as well as changes in missile gain.

CONCLUDING _HKS

A method of designing a self-adaptive missile guidance system has

been presented. To illustrate the techniquej the design has been effected

for a simplified beam-rider missile where the inputs are assumed to be

known in a statistical sense only_ the missile is g limited_ and the

gain of the missile varies by a factor of 20 over its flight envelope.

It has been shown that the dynamic performance (i.e., percent time limiting)

can be measured internally and the measurements_ in turn, can be used to

adjust the controller (modified Wiener filter) so that the missile per-

forms in an optimum manner over its flight envelope.

The initial design phase has been accomplished by the analytical

method suggested by Newton's modified Wiener theory. Analog computer

studies have been used in the subsequent design phases to show that the
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performance criterion of the missile (minimummean-square error) changes
throughout the flight envelope as a function of the missile's acceleration
capability. Computer studies have also shownthat the percent of time
that missile acceleration limiting occurs can be measuredand that o_timum
values of percent time limiting are associated with each value of limit
level.

It has been shownthat the guidance system can be madeself-adaptive
in the case where one particular value of percent time limiting can be
chosen as a reference. This reference signal can then be comparedto the
measuredvalue of percent time limiting and the difference between these
two signals can be used to drive a servo which, in turn_ adjusts the Wiener
filter. In this study, the reference value of percent time limiting _as
chosen to correspond to the mid-range limit level. Analog studies were
also madeto determine the performance of a beam-rider missile where it
_as assumedthat dynamic pressure_ q, could be measured; that is, the
self-adaptive feature was dropped and it was assumedthat the reference
signal to the percent time limiting detector varied as a function of
external environment measurements. In this case_ it was shownthat
optimumperformance (minimum _2) could be maintained throughout the entire
flight envelope.

Studies were also madeto detemine the effect of input magnitudes
on system performance. The results of these studies showthat the adaptive
loop adjusts the system to give good operation when the input magnitudes
are varied from 25 percent to as muchas 225 percent of the design values.

It is believed that the concept of using percent time limiting to
adjust the controller in a guidance system is a significant contribution
to_ and may extend the usefulness of, classical desigm methods.

Further research areas may include the application of this concept
to the design of homingmissile guidance systems in which someof the
parameters are time varying. The concept may also be useful in designing
certain optimumnonlinear systems _hich are subject to deterministic inputs.
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AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., July 26, 1960
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APPENDIX

BASIS FOR INTUITIVE FEELING THAT CONTROL OF RMS VALUE OF A

SIGNAL COMES CLOSE TO CONTROLLING PEAK VALUE

4
0

0

The intuitive feeling that control of the rms value of a signal comes

close to controlling the peak value is based on the following reasoning.

First; the assumption is made that the input signal to a limiter is
Gaussian and has a zero mean value. This can be represented by the

Gaussian distribution function show_ in figure 20.

The command acceleration signal to the missile is aM; and o is

the standard deviation or the rms value of the missile acceleration

(o = _-_). For example; if we select the value of a--_ for design pur-

poses so that it is equal to aHl_2 , the area under the curve from -20

to +20 will be a measure of the percent of the time that the missile

guidance will be operating in the linear or unsaturated range. For calcu-

lation purposes it is somewhat more convenient to determine the value of

the integral from -_ to -20 and from +20 to +_; that is; it is

easier to calculate the percent of the time that the acceleration required

of the missile exceeds the available acceleration. This expression is

defined by

P(L_HL > a_) _ 2 Is" ]- (a#/2)d(aM)
m- d-_

--00

(A1)

Integrals of this type are tabulated extensively in mathematical and

engineering literature (ref. ii). For this example; aMD = aH_2, evalua-

tion of the above equation yields a value of 0.0456. This means that if

the design value of rms missile acceleration_ aMD ; is chosen to be one-half

the maximum acceleration available, aML, then the probability that the

required acceleration (aM) will exceed the limit level (aHL) is 0.0456; or,

in other words, the system will be operating in the saturated range only

4.5(3 percent of the time. This small percentage of time during _hich

saturation is expected has lead to the aforementioned intuitive feeling

that control of the rms value of a signal comes close to controlling

the peak value.

Equation (AI) is valid only in the case of a cascade system. By

rationalization only (through use of the central limit theorem) can equa-

tion (AI) be extended to the feedback system which is of interest in this

report. Hence, percent time limiting calculations for feedback systems

that are based on equation (AI) are rough approximations only.
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TABLE I.- SUMMARY OF OP_I_KTM NEWTON IIODIFIED

WIENER SYSTEM PARTD_ETERS

A

4

0

0

Design Missile rms design acceleration, a--_, g

parameter i. 5 2.0 5 -0 i0.0 Wiener

P2

Pz

_3

ql

o.4969

4.1561

3.5073

.3787

i.4542

2.7606

1.1526

2.4768

.5826

.273 8

1.2580

2.8680

3.2492

1.3198

Z. 80!9

.0849

.6829

2.73 89

4.4506

i. 1051

1.6287

.0356

.4346

2.6495

7-1366

.86oi

I. 4143

0

0

2.4756
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Figure i.- Typical beam-rider guidance system.
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(b) High-gain autopilot design.
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Figure 2.- Missile autopilot block diagrams.
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Figure 3-- Beam-rider control system with variable limit level autopilot.
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Figure 4.- Block diagram of beam-rider missile control system with

modified Wiener filter and variable limit level autopilot.
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Figure 5-- RMS error for various Newton modified Wiener beam-rider
missile designs.
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Figure 13.- Effect of g limit on rms error.



26

16

o

_12

J I0
z
O

8

n-
J.l

6
w

< 4

w

2

0

0 MINIMUM POINTS OF
CURVES IN FIG 13(A)

I 1 / I I

20 40 60 80 I00

OPTIMUM PERCENT TIME LIMITING

A
4
0

0

(b) Acceleration limit versus optimum percent time limiting.

Figure 13.- Concluded.
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